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IMPROVED METHODS FOR COMPUTING MASSES FROM NUMERICAL SIMULATIONS 
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An important advance in the computation of hadron and glueball masses has been the introduction of non-local 
operators. This talk summarizes the critical signal-to-noise ratio of glueball correlation functions in the continuum 
limit, and discusses the case of (qq and qqq) hadrons in the chiral limit. A new strategy for extracting the masses of 
excited states is outlined and tested. The lessons learned here suggest that gauge-fixed momentum-space operators 
might be a suitable choice of interpolating operators. 

1. INTRODUCTION 

In the past few years several schemes for produc- 

ing non-local glueballl* *, 3 and hadron operators have 

been developed. These operators yield correlation furic- 

tions which are much less noisy than their counter- 

parts using local operators, and, consequently, more pre- 

cise mass estimates at fixed statistics. Except for two 

attempts59 6 the improved methods have not yielded an 

estimate of excited-state masses. If numerical simula- 

tions are to become a versatile tool of elementary parti- 

cle physics, these masses must be computed, not just for 

the sake of completeness, but also for the identification 

of resonance parameters.’ 

The usual way to compute excited state masses is 

a variational calculation with the matrix of correlations 

of some set of operators. A typical set will be neither 

complete nor linearly independent, and only a statisti- 

cal estimate of the matrix is available. Coniequently, 

the number of accessible states M is likely less than the 

number of sampled operators N. Singular-value decom- 

position is a method of determining M from the data and 

also suggests a variational calculation in the space of the 

M accessible states, instead of te space of N sampled 

operators. 

The presentation is as follows: Sect. 2 reviews how 

non-local operators solve the critical signal-to-noise prob- 

lem for glueballs. Sect. 3 discusses a signal-to-noise 

problem for hadrons in the chiral limit. The refinement 

of the usual variational calculation is given in sect. 4. 

Sect. 5 proposes that momentum-space operators (in a 

fixed gauge) might offer a useful set of operators. 

2. SIGNAL-TO-NOISE RATIO FOR GLUEBALLS 

Glueball masses are computed from correlation func- 

tions of the form 

c,(t) = (‘P7(t)%(0)) - (%(t))(@,,(O)), (2.1) 

where +, is a function of the lattice gauge field with 

support on the time-slice t. The index T denotes the 

quantum numbers of the state(s) of interest. A numerical 

simulation has finite statistics, so another important issue 

is the noise of C&(t), which is quantified by the statistical 

dispersion of @,(t)@,(O): 

~:(tl, h) = (2.4 

((Q,(t~)~,(o))(~~(a)Q,(t,))) - C4W~(h). 

Eq. (2.2) treats correlated fluctuations between time- 

slices tl and ts. For tl,l large enough for clustering,’ 

u:(tl,tz) = C,(ltt - tal)Cv(O) - C&)C,(tz). (2.3) 

Generally, the first term dominates, and the signal-to- 

noise ratio is 

Es: = &ii% = @G$& (2.4) 

for glueball correlation functions. 

The correlation function C,(O) can be ultraviolet di- 

vergent for too local choices of interpolating operators 

Q,. such as the plaquette, or other small Wilson loops. 

If C,(O) diverges as a-‘, then 

(2.5) 

so the ensemble size Nconf must grow proportionally 
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Table 1: Ultraviolet divergence of the noise for various 

glueball operators. 

methodref. z 

plaquette, etc.10 5 

adjoint Ii&l 0 

fuzzy loops1 l-4 

smeared 10op.s~~ 5 0 

inverse Dirac3s * o-1 

momentum space sect. 5 0 

to a-lr. For z > 0 this is an obstacle to computing 

continuum-limit masses worse than critical slowing down. 

The origin of this divergence has been analyzed 

in detail.8 For states accessible to two gluons, define 

P;:(W) by 

,;(pa+qo)t(2~)36(3)(~+ f- E)&,(p + qjf(p - 4)) = 

1 s’%(t) 

~6A$pWWq) A=O ’ 
(2.6) 

where F7 is the threcmomentum of the representation +. 

(An analogous analysis is possible for three-gluon states.) 

The a-dependence of the signal-to-noise ratio is governed 

by the ultraviolet degree of divergence’ of rp$,(Plk). If 

that degree is positive (negative) C,(O) has (does not 

have) an ultraviolet divergence. Table 1 gives the signal- 

to-noise-ratio exponent z for various operators. The suc- 

cessful methods (z = 0) reduce the noise because they 

cut off the contribution of the high k modes in C,(O). 

3. SIGNAL-TO-NOISE RATIO FOR HADRONS 

The case of hadrons is quite different than that of 

glueballs. Power counting arguments like those leading 

to Table 1 predict huge L’S, However, using qP mesons 

as an example, correlation functions are not computed 

by 

G(t) = c c f(~1,~&7(3%)g(i2)x 
&..+a GIB 

(~(~~,t)r~(~3,t)~(~l, wm, f-9 (3.1) 

where the quark bilinears, with smearing g(yJ and 

f(&, &) at the source and sink, correspond to operators 

@? in eq. (2.1). Instead, quark propagators G(Z, t;Y;O) 
provide a much better estimate: 

G-(t) = c c f(~1,Qd?71)g(i2)x 
PI ,G G 22 

(tr[rG(~~,t;~~,O)rGt(~~,t;~~,O)l). (3.2) 

The noise of eq. (3.2) is a qqqcj correlation function: 

4(htQ = (C c c f(G,~2)g(G)g(y;)x &,h l71,c-a 

(3.3) 

Similarly, the noise of a baryon correlation function is 

given by a qqqqqq correlation function (for SU(3)). 

The lowest lying states contributing to these correla- 

tion functions will be a two (three) pion state for mesons 

(baryons). For tl and ts large enough for clustering 

u;(tl,t2) cc exp(-Mltl - tz/ -n m t ) P *m,nr (3.4) 

where M is the mass of lowest-lying state in the chan- 

nel under consideration, n, = 2 (nq = 3) for mesons 

(bav-), m, is the mass of the (lattice) pion, and 

t min = min(tl,t2). Hence the signal-to-noise ratio is 

z:,* = pzf-$$ = ex;;$--;,2). (3.5) 

In this case, the relative errors increase with t, a situation 

that worsens in the chiral limit m, -+ 0. (In the chiral 

limit the error bars are t independent, like for glueballs, 

because e-“‘rt goes over to a power law.) 

The signal-to-noise ratio for hadrons can be im- 

proved by judicious choice of the smearing functions 

g(yJ and f(&, 2s). A better operator is one where 

$. = &,,a2 f(&,&)&&, t)r+(&,t) has a large over- 

lap with one-meson states, but @; has almost no overlap 

with two-pion states. 

4. EXCITED STATES 

When N operators are available one can determine 

the matrix correlation function 

@J(t) = (@(t)@)(o)), (4.1) 

where i = 1,. . . , N labels the operators. For example, 

i can denote the smearing time, the number of fuzzing 



steps, or p in the two-dimensional inverse Dirac operator. 

From the transfer matrix formalism 

@l(t) = 5 a~)&-“‘“~~’ = n$l @(t)+‘(t), (4.2) 
n=l 

where M is an number with order of magnitude N$ At 

T - ml,, -r one should not expect Ciij)(r) to contain that 

much information, because the higher mass states will be 

obscured by the noise. If the practical value of M is less 

than N. then N-M eigenvalues of the matrix C!ij)(r) 

will be zero, and M of them will be positive. Let 

C!“‘(T) = 5 A nv~‘vy, 
lx=1 

where vi) is the eigenvector with eigenvalue X,: 

-f c!ij)(T)vf) = x,$). (4.4) 
j=l 

Together eqs. (4.2) (4.3) and the assumption M < N 
imply 

&p(,-) = 5 &,,J,($, b(j) = fit?:) (4.5) 
m=l 

where I?,,,,, is an M x M rotation matrix. Now consider 

w;) = v$/fi. (4.6) 

Then two lines of algebra show 

w 

(4.7) 
id 

i.e. zt) projects out the n-th state! 

The number of accessible states M should be com- 

puted from the data, in the sense of singular-value 

decomposition.12 After computing the eigenvalues of 

C?)(r) one will find a some l igenvalues of reasonable 

magnitude-within a factor of the relative error from the 

largest eigenvalutand the others smaller still. For poor 

data some eigenvalues may even be negative. The num- 

ber with reasonable magnitudes will be M. and the other 

modes will be ignored entirely: 

(The second prescription is appropriate, say, for defining 

wi).) Eq. (4.8) also weeds out redundant information in 

C!ij)(r) arising from similarities in the chosen operators. 

The matrix I?,,,,, is determined by the usual vari. 

ational calculation criterion of maximizing C,,,(t), fo 

some t > T. where C,,,,(t) = ~~~,z~kT!ij)(t)z~) 
(The normalization of wi) is such that C&(r) = 1. 

Further variations and orthogonality determine z$,q fo: 

2 5 n 5 M. Then rrz,,,* is determined by a fit to C,,,,(t) 
The refinement is that the variation is over M - : 

rather than N- 1 parameters. Whereas N is subjectivel! 

chosen, M is objectively chosen by the data. 

In meson and hadron calculations the expense o 

computing the quark propagator likely means N,ink > 

N .OYrce. As long as N,ink, Nsou,,, > hf singular value 

decomposition of non-square matrices follows througt, 

much as above. 

An additional modification is appropriate for thr 

channel with vacuum quantum numbers. Usually masse: 

are computed from the connected correlation function 

C&) = (*v(t) Q,(O)) - (a)(%), (4.91 

but if (@r) entails an average over t, the estimate ir 

biased.13 To avoid bias one can fit to the disconnectec 

correlation function C,,d(t) = (@,(t)+,(O)): 

c,,,(t) = A (e-‘“t + e-m(T-r)) + ~1 
(Qr) = B, 

(4.10 

taking the covariance matrix of C,,d(t) and (‘P.) intc 

account. Unfortunately, unless B is small (Es ,Z A) it i! 

impossible to get reasonable estimates of A and n. 

The variational calculation can be extended to make 

eq. (4.10) a viable strategy. After computing R,,,,, frorr 

C$‘(t) as above, one has, via eq. (4.5) an estimate o 

the &t)(r). Then define ;I!’ = (‘Pp)) and construct 

ii = - 
i: 

( 

*A - 1 c&~)(r) 

1 

, (4.111 
m#n 

with N and the ok) such that Cc, ii)&c)(r) = S,,,,,. 

4.1. A test 

This variation on the variational calculation has beer 

tested for glueballs using two-dimensional inverse Dirar 

matrices as operators, Qf’) = Tr{p(‘)/(Z)r + pt’))}, anr 

N = 20 choices of IL(‘). The results from this 16’ 

p = 6.0 data are in Table 2, along with results of i 

previous anslyris,14 which was a traditional variationa 

calculation, minimizing the error in the correlation func- 

tion for t N m$. The discrepencies in the masses art 

likely more due to the present reliance on the covariancc 



Table 2: Comparison of masses from the modified varia- 

tional technique and those determined previously14 (“old 

mass”) from the same data. 

state mass old mass x’/dof tl;ta XI/~ 

A:+ 0.77(6) 0.67(3) 2.8314 2;3 

1.54(70) - 2.0813 3;4 4 

E++ 1.32(E) 1.10(7) 1.0213 2;4 65 

e1 0.864(41) 0.876(30) 1.61/3 2;5 170 

matrix15 between time-slices than the new variational es- 

timate. (The old analysis did not take the covariance ma- 

trix into account.) Fits to excited states were done with 

fixed lowest-lying mass and variable lowest-lying ampli- 

tude. In all cases (including those not tabulated because 

of unreliable error estimates) the lowest-lying amplitude 

was consistent with zero. 

The results of the test are disappointing. Only for 

A:+ was the eigcnvalue ratio XI/As small enough to 

obtain a reasonable estimate. In addition to the obvious 

problem that high-mass states (ma > 1) decay out of 

the correlation function in a few timeslices, the operators 

chosen were probably not linearly independent enough to 

resolve differences between excited states and the ground 

state. This may also explain the Ape result that the 

excited states were consistent with n-glueball states.5 

5. MOMENTUM-SPACE OPERATORS 

Recall that the vector ~2) has the interpretation of 

a wave function projected onto the space spanned by 

@‘)IO). If lack of linear independence in these basis 

states hinders the variational computation, one should 

seek a more independent set. It seems unlikely that 

presently established methods are versatile enough to 

tune them in the necessary way. A possibility is to use 

gauge-fixed momentum-space operators, that is. opera- 

tors built out of gauge potentials A,(p) and quark fields 

$(p). As long as the momentum p is not ultraviolet, 

power counting8 argues that glueballs will not have a crit- 

ical signal-to-noise problem. It is also quite easy to con- 

struct operators. For example, GE = A,(p(‘))A,(-p(‘)), 
p,v E {1,2,3}, couples to A:+, E++, T:+ and T;‘. 
One might also hope that it is possible to construct 

hadron operators @’ whose square does not couple 

much to pions. 
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